Gepubliceerd op 12-09-2021

Handelsrekenen

betekenis & definitie

Effecten. Bij het koopen en verkoopen van effecten ontvangt men van den commissionnair een nota volgens een vast model.

Op deze nota zijn aangegeven : de koers, waartegen de effecten gekocht of verkocht zijn; de provisie, die de commissionnair in rekening brengt; het zegel, dat de commissionnair op de nota heeft moeten plakken en dat hij aan den kooper of den verkooper in rekening brengt en bij obligaties bovendien nog de loopende rente.Volgens het provisietarief van de Vereeniging in den Effectenhandel te Amsterdam wordt aan personen, te Amsterdam woonachtig, een ander tarief in rekening gebracht dan aan niet Amsterdammers. Voor provisie zie : Handel in effecten onder: Provisietarief.

Onder nominale waarde verstaat men de waarde, die op het effect gedrukt is. De koerswaarde is de nominale waarde, omgerekend tegen den koers, dus de werkelijke waarde. De koers is het aantal guldens, dat men betalen moet voor iedere ƒ ioo,— nominaal. Een effect, nominaal groot ƒ iooo,—, waarvan de koers 92% is, heeft dus een werkelijke waarde (koerswaarde) van xo x ƒ 92,— = ƒ 920,—. Het zegelrecht voor effectennota’s bedraagt 1 °lm berekend van de koerswaarde; bij obligaties berekend van de koerswaarde, vermeerderd met de loopende rente. Het minimum is ƒ 0,10.

Verder wordt het zegelrecht naar boven afgerond met een veelvoud van 5 cent, totdat 25 cent bereikt is. Is het zegelrecht meer dan 25 cent, dan wordt naar boven afgerond met een veelvoud van 25 cent, totdat ƒ 5,— bereikt is. Boven ƒ 5,— wordt het zegelrecht naar boven afgerond met veelvouden van 50 cent. Vindt men dus voor een zegelrecht b.v. ƒ 3,02, dan wordt gerekend ƒ 3,25. Bij een zegelrecht van ƒ6,14 wordt het ƒ6,50.

Bij obligaties wordt bij aan- en verkoop nog loopende rente in rekening gebracht; dit is de nog niet betaalde rente. Vervallen van een 4% obligatie van ƒ 1000,— de coupons b.v. op x Januari en op 1 Juli, dan kan de eigenaar van de obligatie dus ieder jaar op 1 Januari en op 1 Juli ƒ 20,— rente innen. Verkoopt hij de obligatie nu b.v. op 10 April, dan moet hij van den kooper nog de rente hebben vanaf i Januari tot 10 April, want hij heeft voor het laatst op i Januari rente gehad. De kooper moet bij aankoop die rente bijbetalen, wat zeer billijk is, omdat hij op 1 Juli een half jaar rente uitbetaald krijgt, waarvan hij dus nu op 10 April eigenlijk reeds een gedeelte aan den vorigen eigenaar teruggeeft. Het aantal rentedagen wordt dus altijd berekend vanaf den laatsten coupondag tot aan den dag van koop of verkoop. Hierbij rekent men iedere maand op 30 dagen; de coupondag telt mee, de dag van koop of verkoop telt niet mee.

De rente wordt steeds berekend over de nominale waarde. Bij aandeelen is er geen sprake van rente.

Bij buitenlandsche effecten is de nominale waarde uitgedrukt in vreemd geld. Deze nominale waarde wordt op de effectennota tegen vaste reductiegetallen omgerekend in

Nederlandsch geld.

Prolongatie.

Op een prolongatie vallen drie kosten:

1e. de provisie. Deze is 1½°/oo van de geldleening;
2e. de zegelkosten. Deze bedragen altijd ƒ0,60;

Deze beide kosten moeten direct bij het sluiten van de prolongatie betaald worden en worden daarom van de leening afgetrokken;

3e. de rente. Deze wordt achteraf aan het eind van iedere maand betaald.

Verlengt men na een maand de prolongatie, dan betaalt men aan het eind van die maand de rente over de afgeloopen maand (de maand wordt dan op 30 dagen gerekend) en weer 1½°/oo provisie voor de volgende maand. Bij de aflossing betaalt men, behalve het geleende bedrag, alleen nog maar de rente over den tijd vanaf de laatste verlenging tot aan den dag van aflossing. De maand wordt bij de aflossing op het juiste aantal dagen gerekend; men betaalt echter steeds minstens 15 dagen rente over de laatste maand.

Wissels

Indien men een wissel, die over eenigen tijd vervalt, niet wenscht te bewaren tot den vervaldag, maar hem reeds eerder wil innen, kan men hem veelal aan een bank verkoopen, of wat hetzelfde is, bij een bank verdisconteeren. De bank betaalt dan het wisselbedrag uit, verminderd met de rente (het z.g. disconto) gedurende den tijd, die nog verloopen moet, totdat de wissel vervalt. De rente vanaf den dag van disconteering tot aan den vervaldag wordt dus van het wisselbedrag afgetrokken. Men rekent hierbij iedere maand op het juiste aantal dagen; de dag van disconteering en de vervaldag tellen mee, en bovendien de dag na den vervaldag. Feitelijk brengen de banken dus twee dagen te veel in rekening.

Is de vervaldag van een wissel 21 September, en verdisconteert men hem op 26 Juni, dan bedraagt het aantal discontodagen (rentedagen) 89, nl. in Juni 5, Juli 31, Augustus 31, September 22.

BEREKENINGEN IN ENGELSCH GELD.

De geldeenheid in Engeland is het Pond Sterling, waar voor men het teeken £ gebruikt. Het Pond Sterling is verdeeld in 20 shillings, iedere shilling is weer onderverdeeld in 12 pence. Een bedrag van 4 Pond Sterling, 12 shillings, 7 pence wordt als volgt neergeschreven : £ 4. 12. 7.

OMREKENING IN HOLLANDSCH GELD

Men verwaarloost bij het Engelsch geld de pence, met dien verstande, dat men minder dan 6 pence weglaat, en 6 pence of meer zoolang voor één shilling rekent. De aldus gemaakte fout herstelt men later, door voor iedere verwaarloosde penny 4 cent te berekenen, bij een wisselkoers van ongeveer ƒ8,— en 5 cent bij een wisselkoers van ongeveer ƒ12,—.

DE RENTEBEREKENING IN REKENING-COURANT

Een rekening-courantverhouding ontstaat meestal tusschen een bank en een cliënt, als die cliënt zijn geld bij de bank plaatst, en verder naar behoefte geld van de bank weghaalt, of geld naar de bank brengt. Soms, als dat is overeengekomen, mag de cliënt ook meer geld bij de bank opnemen, dan hij er heeft staan; hij krijgt dan van de bank crediet. Het geldbedrag, dat de cliënt bij de bank heeft staan, zal dus voortdurend aan verandering onderhevig zijn; de bank boekt dit alles op een rekening, die ze voor den cliënt opent. Brengt de cliënt geld naar de bank, dan krijgt de bank een schuld aan den cliënt; daarom zal zij dit credit (rechts) op die rekening boeken. Haalt de cliënt geld van de bank weg, dan krijgt de bank een vordering op den cliënt; daarom zal zij dit debet (links) op die rekening boeken. Het saldo van die rekening (saldo beteekent overschot; het is het verschil tusschen de beide kanten) geeft dus op elk moment het bedrag aan, dat de bank aan den cliënt schuldig is, nl. als het een creditsaldo is (als rechts het meest staat) of dat de bank op den cliënt te vorderen

heeft, nl. als het een debetsaldo is. (als links het meest staat) Daar door het voortdurend halen en brengen van geld dat saldo steeds verandert, noemt men zoo’n rekening, waarop dat alles geboekt wordt, een rekening-courant. (loopende rekening)

De moeilijkheid van de rekening-courant zit hem nu in de berekening van de rente. Men zou eigenlijk over ieder saldo een aantal dagen rente moeten berekenen, en daar het saldo steeds verandert, zou men dus tal van renteberekeningen moeten uitvoeren, wat ontzettend ophoudt. Daarom heeft men voor het berekenen van de rente een kortere methode bedacht, nl. de methode der renteproducten. Moet ik berekenen de rente van een kapitaal K, dat gedurende d dagen uitstaat tegen p% rente per jaar, dan vind ik die rente met de volgende formule : Kxpxd

100 x 360

Deze formule kan ook anders geschreven worden, nl.

Kxpxd Kxd p Kxd 360

= x = : .

100 X360 100 360 100 p

Nu noemt men de formule Kxd het renteproduct, en de formule 360*

100 p

den standvastigen deeler. Men kan dus kortweg zeggen, dat de rente gelijk is aan

renteproduct

standvastigen deeler.

Moet ik nu van een aantal kapitalen de rente berekenen tegen een bepaald percentage, dan bereken ik eerst van ieder kapitaal het renteproduct, tel al die renteproducten op, en deel dan de som dier renteproducten ineens door den standvastigen deeler. Dit geeft een zeer groote besparing van cijferwerk.

Het renteproduct berekent men, door het kapitaal eerst af te ronden op heele guldens, (minder dan 50 cent verwaarloozen, 50 cents of meer voor een gulden rekenen) het daarna door 100 te deelen door er een komma in te zetten,

dan te vermenigvuldigen met het aantal dagen, en de aldus verkregen uitkomst af te ronden op een heel getal.

Den standvastigen deeler berekent men door het getal 360 te deelen door het rentepercentage, b.v. voor 5% is de standvastige deeler 360/5 = 72, voor 4% 90, 41/2% 80, enz.

De renteberekening in rekening-courant is nu het makkelijkst uit te voeren door van de kapitalen eerst een staffel te maken, door ze in volgorde van de datums onder elkaar te zetten en telkens als er een nieuw kapitaal bijkomt, te berekenen, hoe groot het nieuwe saldo wordt. Daarna berekent men voor ieder saldo, hoeveel dagen het bij de bank gebleven is, dus hoeveel dagen rente het gedragen heeft; vervolgens berekent men de renteproducten, en ten slotte uit het saldo (verschil) der renteproducten de rente.

Voorbeeld :

Iemand bracht op 13 Januari naar zijn bank ƒ 500,—. Op 3 Februari haalde hij terug ƒ 287,40, op 25 Februari ƒ 123,75, op 6 April bracht hij bij de bank ƒ 668,30, op 20 Mei haalde hij terug ƒ 435,80. Op 30 Juni wordt de rekening-courant afgesloten. Hoeveel rente heeft hij te vorderen bij een rentevoet van 3%, als de bank de maand op 30 dagen stelt?

Datum D/C Kapitalen Rente

dagen Rentep

Debet roducten

Credit

Januari... 13 C ƒ 500 20 100

Februari. . 3 D „ 287 40

C ƒ 212 60 22 47

Februari.. 25 D „ 123 75

C ƒ 88 85 41 36

April 6 C „ 668 30

C ƒ 757 15 44 3 33

Mei 20 D „ 435 80

Juni 30 C ƒ 321 35 40 128

644

Eerst zijn de kapitalen gestaffeld. Op 30 Juni is de bank ons dus schuldig ƒ321,35 zonder rente. Daarna is het aantal dagen berekend, dat het beginkapitaal en de volgende saldi rente hebben opgeleverd. Vervolgens berekent men de daarbij behoorende renteproducten. (20 x 5, 2,13 x 22, 0,89 x 41, enz.)

In totaal is de bank dus rente schuldig over 644 renteproducten; dit is a 3% 644 : 120 = ƒ 5,37. De totale schuld van de bank inclusief rente op 30 Juni is dus ƒ321,35 + ƒ 5,37 = ƒ326,72.

Hierna volgt nog een voorbeeld van renteberekening voor het geval, dat men zijn geld niet alleen naar de bank brengt, maar dat men ook nog zoo noodig crediet van de bank krijgt. De banken berekenen dan over het door haar verleende crediet een hoogere rente, dan ze vergoeden over het bij haar geplaatste geld.

Voorbeeld. 4 Juli gestort bij de bank ƒ 1200,—, 17 Augustus opgenomen ƒ 1900,—, 27 October gestort ƒ 1000,—, 31 October opgenomen ƒ 800,—, 13 December gestort ƒ 900,—. Afsluitdag 31 December. Debetrente 5%, Creditrente 2%.

Datum D/C Kapitalen Rente

dagen Renteproducten

Debet Credit

Juli 4 C ƒ 1200 _ .. 43 516

Augustus. . 17 D » 1900 —

D ƒ 700 — 70 490

October... 27 C ,, 1000 —

C ƒ 300 — 3 9

October... 31 D „ 800 —

D ƒ 500 — 43 215

December. 13 C „ 900 —

December. 31 C ƒ 400 — 17 68

70S 593

Op 31 December heeft de bank aan rente te vorderen

705 593

ƒ = ƒ 9,79, en is zij aan rente schuldig ƒ = ƒ 3,29.

72 180

Dus per saldo rente te vorderen ƒ 6,50. De bank was zonder rente schuldig ƒ 400,—, dus op 31 Dec. is de bank inclusief de rente schuldig ƒ400, ƒ6,50 — f 393,50-.

< >